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Abstract. With the growth of the use of embedded systems in safety-critical ap-
plications, the demand for predictable and reliable real-time systems has increased
drastically. A large percentage of real-time systems developed today are still built
using C due to the performance requirements, and hence inherently unsafe. The
advent of Rust has made it possible to achieve safety and reliability without any
compromise on performance. This paper presents HarSaRK-RS, a priority-based
preemptive hard real-time kernel implemented in Rust. The proposed kernel design
and architecture ensure safety at compile time keeping the data-structure and run-
time overhead of the kernel minimal, thus enhancing the real-time guarantees of
the system. It guarantees freedom from data races, deadlocks, and priority inver-
sion at compile-time. The Kernel core is independent of any clock for its operation,
making it power efficient and ideal for battery-operated environments.

Keywords. Real-time systems, real-time kernels, hard real-time systems, Rust,
safety critical systems

1. Introduction

Embedded systems are being deployed in a variety of safety-critical applications. Fail-
ure in such systems can have serious consequences, e.g., aerospace industry, automo-
biles, power plants, etc. [1]. Thus, the safety requirements and reliability expectations
from real-time systems have increased drastically over time. Due to the complications
in writing applications directly over embedded platforms, researchers have developed
Real-time Kernels which are middlewares that operate between the application and the
hardware. It provides the application developers abstractions over the hardware that takes
care of various intricacies and provide friendly APIs so that application developer can
focus on building the application rather than handling the complexity of dealing with the
hardware.

There are two aspects to the real-time guarantees made by kernels. One of them
is the adherence to completion before a deadline, and the other one being the safety
and reliability of the system and its comprising tasks. This includes guarantees against
invalid memory accesses, invalid type casts, memory leaks, data races, deadlocks, etc.
The presence of such bugs in the real-time systems’ implementations directly questions
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the reliability of the system itself. Thus, it is of utmost importance that the software
written for real-time systems is guaranteed to be safe and reliable.

The price of running unsafe code is high. For example, in 2017, the Common Vul-
nerabilities and Exposures database lists 217 vulnerabilities that enable privilege esca-
lation, denial-of-service, and other exploits in the Linux kernel [2], two-thirds of which
are a consequence of the usage of unsafe programming languages. These errors can be
attributed to ignoring the intricate details of object lifetimes, synchronization, bounds
checking, etc., in a complex, concurrent environment. Even worse, the pervasive use of
pointer aliasing, pointer arithmetic, and unsafe typecasts which keeps modern systems
beyond the reach of software verification tools [3]. This emphasizes the need for usage
of safe programming languages in the development of safety-critical systems.

Rust is a modern multi-paradigm system programming language focused on safety
and performance [4]. It uses strong types and static analysis of source code to guaran-
tee various aspects of software safety at compile-time [5]. By safety, we mean type and
memory safety, type safety, and freedom from data-races. This makes Rust an Ideal can-
didate for building real-time systems. This paper proposes a Real-Time Kernel developed
in Rust, HarSaRK-RS. The major goals of the kernel are:

• Minimal memory footprint.
• Low runtime overhead (Kernel Data-Structures).
• Freedom from Data races, Priority Inversion, and Deadlocks.
• Safe and reliable memory management.
• Hard real-time guarantees.

The bold safety guarantees made by Rust has attracted various developers into de-
veloping operating systems and kernels in Rust. Redox OS is a UNIX-like operating sys-
tem written in Rust. The motivation behind the development of Redox OS is the fact that
operating systems are an integrated part of computing, and thus a very security-critical
component [6]. There is an increasing interest in implementing an OS in Rust [7]. Levy
et al. (2017) provide a detailed case study of writing a kernel in Rust and argue that Rust
will enable the next generation of safe operating systems [8]. These efforts motivated us
to explore Rust in the realm of real-time systems and develop HarSaRK-RS, a hard safe
real-time kernel in Rust.

The paper is organized into six major sections. A brief discussion on Rust program-
ming language and its features that make it safe is presented in Section 2. Section 3 ex-
plains the Kernel architecture and details regarding sub-systems. It also explores how
Rust has been leveraged to make kernel and application-level safety guarantees. Sec-
tion 4 discusses the development process, experimentation details, and comparison with
existing real-time kernels. It also explores the accompanying results. Section 5 concludes
giving the summary of contributions of this work.

2. Significance of Rust in Embedded Systems Programming

The Rust programming language exists at the intersection of low-level systems program-
ming and high-level application programming. It aims to empower the programmer with
both fine-grained control over memory and performance and high-level abstractions that
make the software more reliable and quicker to produce [5]. The design of Rust ex-
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ploits the state of the art research in linear types, affine types, alias types, and region-
based memory management [9]. The ownership-based type system has been formulated
into formal statements and proven for the safety guarantees they make [10]. These fea-
tures allow Rust to guarantee memory, type, and concurrency safety at compile-time.
Ownership[10] and Borrowing[5] form the crux of the safety mechanisms of Rust. These
mechanisms allow Rust to guarantee compile-time memory safety and freedom from
data races boldly.

Generics[11] and traits[12] are the primary mechanism to achieve polymorphism
and code-reuse in Rust. The ownership type system of Rust allows expressing and en-
forcing typestates at compile-time, which is useful in safety-critical applications.[13].
Because C does not support generics, kernels written in C tend to use pointers and un-
safe typecasts to emulate type polymorphism. But this is a highly unsafe approach and
opens doors to severe vulnerabilities [3]. HarSaRK leverages Rust generics to provide a
type-safe Inter-process messaging and resource management primitives.

Null pointer de-referencing and flawed exception handling have been the cause for
various notorious bugs in the history of software development. Rust replaces these with
strong types defined using generics and enums, which makes compile-time error han-
dling and other static checks in Rust very robust. The Rust library defines two Enums:
Option<T> and Result<T,E>. The Option type encodes the very common scenario in
which a value could be something or nothing. The Result enum helps represent cases
where a function might not succeed, so the return value will either contain the value or
the error [11].

Though the kernel does not use dynamic memory, the application tasks might need
support for it, and thus HarSaRK supports it. This is where Rust shines ahead of most
other compiled languages. The ownership and borrowing mechanism statically manage
memory, thus wiping away a large group of bugs like memory leaks, double free, use
after free, etc [14].

The resource primitive provided by HarSaRK encapsulates the actual resource and
ensures that the only way tasks can access the resource is via the methods provided by
the primitive, which are safe by design. The static checks are done by Rust to ensure that
only concurrency safe variables are shared across tasks [15]. In this way, HarSaRK is
able to guarantee concurrency safety at compile time.

2.1. Unsafe Rust

In low-level programming, there are various scenarios, for which full control over the
function stack layout is necessary. A typical example is the implementation of a context
switch. Typically, this is addressed by building the required code with an assembler and
linking it to the rest of the Kernel code. However, this breaks the development workflow,
and the Rust compiler cannot check these parts [16]. Thus, these code regions have to be
explicitly marked unsafe.

It is the responsibility of the developer to ensure well-defined behavior inside the
unsafe blocks. If the developer can guarantee that code inside the unsafe blocks does
not lead to undefined behavior, then the compiler can proceed to verify the rest of the
codebase, assuming that this unsafe block works fine [17].

In the Kernel implemented, the only routine that uses unsafe blocks is the context
switch routine, as it requires access to CPU registers and modification of process stacks.
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3. Kernel Architecture

The proposed Kernel is organized into various sub-systems based on their functionalities.
Each module encloses the associated data-structures and routines in it. The sub-systems
interact with each other via appropriate interfaces. They also provide certain public calls
that can be invoked by the end-application.

The Kernel Architecture has been inspired by the Hartex Micro-kernel design [18].
Boolean Vectors have been used internally in the sub-systems instead of other complex
data structures which reduces the kernel overhead considerably. Optional modules can be
chosen not to be included in the compiled binary. A Boolean Vector internally translates
to a 32-bit integer. Each bit represents the state of the task with TaskID as the position of
the bit. This implies that the kernel supports a maximum of 32 tasks. In the current work,
we have restricted ourselves to primary level scheduling. However, if the need for more
tasks arises, then one of the tasks in the tasks can itself act as a scheduler and perform
secondary level scheduling of additional tasks. Figure 1 depicts the block diagram of
HarSaRK-RS.

Figure 1. HarSaRK-RS block diagram

3.1. Hardware Adaptation Layer (HAL)

This is the closest layer to the hardware. It provides safe abstractions to the other Kernel
modules to access and modify the hardware peripherals. Due to the modular approach of
HarSaRK-RS, all hardware-dependent routines in the Kernel comprise the HAL. Thus,
the porting of Kernel onto other machine architectures would only require the rewriting
of this module.
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3.2. Task Management

The task-management module schedules tasks preemptively on the CPU based on prior-
ity. On activation of a higher priority task, this module handles storing the context of the
current task and loads the context of the highest priority task. Multi-tasking in single-
core processors is done by scheduling multiple tasks one-by-one on the CPU. In case the
Scheduler does not have any tasks to schedule on the CPU, then it puts the CPU to sleep.
The CPU is woken up again on the occurrence of an interrupt. In this manner, the Kernel
optimizes the power consumption of the system as a whole.

After the creation of all tasks, all operations on it are on two Boolean vectors
active tasks and blocked tasks. Each task has its own separate task stack. A few
examples of how the use of Boolean Vectors reduces the kernel overhead drastically are:

• Releasing tasks is as simple as enabling the bits in active tasks. Let’s
say multiple tasks have to be released, which are encoded into a boolean
vector task mask. Now all that’s needed to be done is active tasks =

active tasks & task mask , which is a O(1) operation. Hence improves the
execution time of the whole system drastically. The same follows for blocking
and unblocking tasks.

• Improvements in the release, block, and unblock of tasks directly influence the
performance of the other kernel primitives like Semaphore, Message, and Re-
source, as they also internally use Boolean Vectors and are highly dependent on
these routines.

• The Scheduler can compute the new highest priority task to be scheduled by just
finding the Most significant bit (MSB) of active tasks & !blocked tasks.
In HarSaRK-RS, MSB is calculated using a CPU instruction CLZ(Count leading
Zeroes)[19], which is a constant time operation. As this is an integral part of a
context switch, improvements enhance the responsiveness and hence real-time
guarantees of the system.

The tasks in HarSaRK-rs are user (application) tasks, which could be composed
to realize an end control system. These tasks are basic tasks meaning they are of non-
blocking style. HarSaRK is a library kernel, thus tasks are defined as functions and the
kernel allocates the stack space for it and takes care of scheduling it. However, if the de-
ployment demands additional hardware support (e.g. device drivers), such support could
be implemented as a task with certain higher priority. The task priorities are static and
fixed, such a scheme prevents deadlocks by design. The tasks are not infinitely loop-
ing, rather they are released by events, and once they finish execution they yields. As
of our current implementation, it is based on stack-based priority ceiling protocol that
overcomes deadlock and bounded priority inversion. But in extreme cases where a high
priority task is being released, again and again, there are chances of task starvation. This
can be addressed in application design by assigning frequently released tasks a lower
priority.

3.3. Resource primitive

In multitasking systems, the shared resources are to be used in an atomic fashion, which
can be easily achieved by the use of Mutex. But Atomic allocation of resources intro-
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duces Deadlocks. Deadlocks cannot be accepted in real-time systems as they put the
whole system on a halt. HarSaRK-RS employs the Stack-based priority ceiling protocol
(SBPC)[20], which ensures the atomic use of resources without running into deadlocks
and priority inversion. The Resource manager ensures atomicity by execution locking,
i.e., when a resource is being locked, all competing tasks are blocked right away. These
tasks are unblocked when the resource is unlocked.

The concept of ownership allows the resource primitive to take ownership of the
actual resource i.e., after a resource primitive is initialized with a variable, the variable
becomes invalid. The only way to access the variable is to call lock on the resource
primitive. This ensures at compile time that all accesses to resources go via the primitive.
The Resource primitive supports safe polymorphism via Traits and Generics.

3.4. Synchronization primitive

Some tasks execute certain set of instructions only if another task has completed execu-
tion till a certain point (called a synchronization point). This is known as task synchro-
nization. It is achieved by notifying the receiver tasks on reaching the synchronization
point, from where it resumes execution. Note that the Synchronization primitive provided
by HarSaRK-RS is asynchronous, i.e., it just checks if the notification was received and
if yes, it executes those instructions; if not, it skips those set of instructions and proceeds
with the rest of the instructions.

3.5. Communication primitive

At the core, communication is just synchronization, but in addition to notification at syn-
chronization points, messages can be passed to the tasks. The message primitive ensures
that the details of the sender, receivers, and message buffer need not be specified every
time to send a message; instead, only the name of the message is required. These details
are provided while initializing the message primitive. The Communication primitive also
supports safe polymorphism via Traits and Generics.

3.6. System Timer (Optional)

For the operation of a few sub-systems, system time is necessary. The system timer mod-
ule uses the timer interrupt to update its time. The developer can choose the interruption
frequency by choosing an appropriate timer interval. This timer interval defines
the granularity and precision of time and event management in the system.

3.7. Timing event manager (Optional)

The timing event manager uses the System timer to detect timing events. Every event
created has an event descriptor that holds a threshold. This defines the time period of the
event as a multiple of the timer interval of the system timer. It also holds a function
pointer, which will be executed when its threshold expires. Once the threshold of an
event expires, then the threshold is reset.
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3.8. System Event Logger (Optional)

For monitoring and debugging purposes, some systems would like to keep track of all
the internal kernel events that are occurring in the system with the timestamp. This log
data can be used to modify the tasks. Alternatively, they can be sent to an operator station
via ports like UART/Serial. Some microcontrollers support external storage, which can
be used to store these logs. System Event Logger collects events like the release of tasks,
tasks exiting, locking of resources, etc. Consequently, this data can be collected and
processed by the developers. The logs collected during runtime can prove to be extremely
useful in debugging, analyzing, and performance tuning of the system.

3.9. Process Monitor (Optional)

Some hard real-time systems would want to monitor the tasks and keep track of the tasks
and their deadlines. This module allows the developer to specify the relative deadline
by which a task should have finished once the task has been released. It must be noted
that the deadline is specified as a multiple of timer interval. This module stores the
deadline and checks with the system time to see if any task has expired. Whenever a task
exceeds its deadline, it creates a log entry in the System event logger.

3.10. Privileges and Memory Protection

The Kernel operates at two operation modes and two privilege levels, which are discussed
in this section [19].

• The operation modes:

∗ Thread mode: The processor is running a normal program.
∗ Handler mode: The processor is running an exception handler like an interrupt

handler or system exception handler.

• Kernel level and User level: It provides a mechanism for safeguarding memory
accesses to important memory regions while providing a basic security model.

In thread mode, the CPU can either be in a Kernel state or in the User state. But while
handling exceptions/interrupts, the processor switches to the Kernel state [19]. Tasks in
User state are restricted from executing some operations.

The Kernel uses two stack pointers: a Main Stack Pointer (MSP) and a Process Stack
Pointer (PSP). By default, all Kernel state (Kernel code and interrupt handlers) code runs
on the MSP while the User state code (threads/tasks) runs on PSP [19]. The fact that the
operating system and exception handlers use a different stack from the application means
that the OS can protect its stack and prevent applications from accessing or corrupting it
[19]. Also, it ensures that the OS does not run out of stack if the application consumes
all the available stack space.

4. Experimentation

This section discusses the details of kernel implementation and testing.
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Table 1. The execution time of various Kernel routines.

Description Clock Cycles Execution Time (10−6 Sec)

Load PendSV Interrupt Handler 20 0.120

Return from PendSV Interrupt Handler 23 0.137

Task Restore 20 0.120

Task Save 23 0.137

Context Switch 129 0.768

Effective Context Switch 43 0.256

Resource Lock 120 0.714

Resource Lock 84 0.500

Semaphore Signal 64 0.381

Semaphore Test and Reset 31 0.185

Message Broadcast 64 0.381

Message Receive 47 0.280

• Development machine: Linux
• Target platform: STM32F407 Microcontroller (Cortex M4 - ARM based) [21].
• Compiler toolchain: Standard Rust compiler, with cargo for package manage-

ment.
• Debugger: arm-none-eabi-gdb for debugging.

The overhead of a real-time kernel can be measured by parameters: the binary size,
the kernel data structure size, and the task switch time. The size of kernel after compila-
tion is 3.8 Kb, which will fit into most microcontrollers without an issue. For measuring
the execution time of different routines, we used the Data Watchpoint and Trace (DWT)
peripheral [19] which allows us to measure the clock cycles elapsed between two points
in the code [22].

Two very popular industrial real-time kernels Freescale MQX[23] and Quadros
RTXC[24] have been compared with HarSaRK-RS for their task switch times. Both of
these kernels are coded in C. The performance benchmarks of these kernels on Cortex
M4 based microcontroller clocked at 96Mhz state the following about their task switch
time [25]:

• Quadros RTXC takes 5.2μs, which translates to roughly 500 clock cycles and
• Freescale MQX takes 12.8μs, which translates to roughly 1171 clock cycles.

Task switch in HarSaRK-RS takes about 129 clock cycles, which is much smaller
than the task switch time of Freescale MQX and Quadros RTXC. Though the microcon-
troller used for the benchmarks is different, comparisons of clock cycles is very much
valid as they are using the same CPU. This is despite the safety guarantees made by
HarSaRK.

5. Conclusion

The Kernel has been developed in a modular fashion, and with the help of cargo
feature flags, it supports the optional compilation of Kernel modules. We have done
an overhead analysis of the Kernel to get an idea of the execution times of vari-
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ous kernel routines and the final binary size. All the modules of the Kernel have
been developed as per specification and tested manually on ST32F407 microcon-
troller. The Kernel has been published as a Rust library on the cargo package di-
rectory. The source code has been open-sourced under MIT license accessible via
https://github.com/Autonomous-Cyber-Physical-Systems/harsark.rs.

In summary, HarSaRK-RS brings novelty in design and implementation as listed
below:

• The use of Boolean Vectors reduces the overhead of all kernel sub modules. All
core kernel routines are O(1) operations, thus minimizing jitter across the system.

• The Kernel is built over strong types and robust error handling, thus reducing
chances of erroneous behavior. The use of Rust has helped guarantee compile-
time concurrency safety and much better memory safety.

• The modular approach of the Kernel allows extensibility to various platforms and
supports even support smaller microcontrollers.

• Separation of stack for kernel and user tasks and different privileges guarantees
the safer operation of the system on the whole.

• Use of SBPC(subsection 3.3) protects the system against Data Races, Deadlocks,
and Priority Inversion.

• Process monitor(subsection 3.9) and System logger (subsection 3.8) can prove to
be extremely useful in debugging, analysis and performance tuning of the system.

• The Kernel core itself is independent of any clock; thus the timing module can be
disabled to achieve better performance and lower power consumption without loss
of any real-time guarantees. This makes HarSaRK-RS ideal for battery operated
environments like IoT.
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